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Abstract. In this work elastic measurements on(NH4)4LiH 3(SO4)4 (ALHS) which were
carried out in the low-frequency range between 1 and 50 Hz are presented. The temperature
dependence of the inverse elastic complianceS−1

11 has been determined between 90 K and
420 K. Distinct anomalies have been found in the temperature dependence ofS−1

11 , which are
connected to the motion of domain walls in the ferroelastic phase belowTc = 232.5 K. Around
Tf = 162 K a (partial) ferroelastic ‘domain freezing’ phenomenon has been observed. To the
knowledge of the authors this is the first time that pure ferroelastic domain freezing has been
reported. However, belowTf the domain walls seem to retain a certain vibrational degree of
freedom which could be responsible for an additional anomaly of the loss modulus which was
observed.

The elastic behaviour of a crystal of ALHS is dependent on the ‘history’ of the given
sample. During temperature cyclingS−1

11 shows differences between the first run of heating and
cooling and later runs.

Finally, some basic insights concerning the domain wall motion were obtained; it was found
that the domain wall mobility decreases by three orders of magnitude in the temperature region
170–230 K.

1. Introduction

(NH4)4LiH 3(SO4)4, abbreviated as ALHS, belongs to the family of ferroelastic crystals
M4LiZ 3(XO4)4 (M = K, Rb, NH4; Z = H, D; X = S, Se). At room temperature it is
tetragonal with space groupP 41. Below the phase transition atTc = 233 K the ferroelastic
phase is monoclinic with space groupP 21 [1, 2]. Optical studies confirmed the second-
order type of this phase transition [3] which is a proper one with spontaneous strain as the
primary order parameter [4].

The elastic instabilities occur in the plane perpendicular to the tetragonal axis (thec-
axis); for the soft elastic constant complete softening was found [5]. Elastic studies of
ALHS below room temperature were performed by Brillouin scattering [5], by piezoelectric
investigations [6], and by torsional vibration and static dilatometry [4].

For the room temperature lattice constants of ALHS,a = 7.642 Å and c = 29.566 Å
have been found [1]. Recently ‘superionic’ behaviour of ALHS was reported [7, 8]. The
transition temperatureTs of the associated ‘protonic’ transition [9] was found to be around
415 K. At about 430 K melting of the crystal occurs [8].

The ferroelastic domain walls form angles of 33◦ and 57◦ with respect to the tetragonal
crystallographic axes [3, 10]. It is interesting to notice that 33◦ is about the angle of the
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hypotenuse of a rectangular triangle with a cathetus ratio of 2:3. Besides this, the line
connecting the sulphur atoms S2 and S3 in the unit cell of ALHS† has about this angle.

An ND4 deuteron NMR study of the ferroelastic phase and the phase transition of the
closely related substance (ND4)4LiD 3(SO4)4 is presented in [11]. Additionally,1H [12] and
14N [13] NMR investigations of ALHS have already shown that H bonds and NH4 groups
are not connected to the elastic anomalies found in the ferroelastic phase. These elastic
anomalies were observed in the low-frequency range between 1 and 50 Hz using a Dynamic
Mechanical Analyzer (DMA). The measured temperature dependence of the inverse elastic
complianceS−1

11 (effective elastic constant) shows similarities to the temperature dependence
of the elastic constantC66 in KD2AsO4 [14]. As the elastic and dielectric anomalies in that
crystal (which is ferroelectric and ferroelastic at the same time) are caused by ‘domain
freezing’ this suggested investigating whether something equivalent happens also in ALHS
which is only ferroelastic. ‘Domain freezing’ can be observed if the relaxation time which
is related to the motion of domain walls diverges at a certain temperature (the ‘freezing
temperature’). Often such a ‘freezing’ of domain wall motion (or ‘pinning’ of domain walls)
is caused by defects in the crystal structure. In order to find out whether ALHS actually
exhibits pure ferroelastic domain freezing (which according to the author’s knowledge has
not ever been reported before), various measurements of the dependence of various quantities
(temperature, frequency, direction) have been performed. The results of these studies are
presented and interpreted in this work.

2. Experimental procedures and results

2.1. Samples and their preparation

Crystals of ALHS were grown at room temperature from a non-stoichiometric acid aqueous
solution of Li2SO4, (NH4)2SO4, and H2SO4 by slow evaporation of water. They were
hygroscopic and appeared in the form of rectangular plates or truncated pyramids with a
typical side length of∼=5 mm. The plates were found to be oriented perpendicular to the
[001] direction. Their sides were parallel to the remaining tetragonal crystal axes. The
orientation of all the plates used for DMA measurements was checked by conoscopical
observation with a polarizing microscope. In order to check the composition and structure
of the samples, x-ray powder diffraction was performed at room temperature [9], the results
of which could be well described by the lattice parameters already published in the literature.

The samples were cut and polished; during sample preparation it was found out that
stress imposed on the sample during cutting does not influence the ferroelastic domain
pattern. In addition, the domain wall orientations do not change during several consecutive
runs of temperature cycling.

In order to be able to detect whether there are effects stemming from single-crystal
plates or from defects, the samples used for the experiments were cut from different crystal
plates grown in different vessels which were filled with solutions prepared at different times
from different chemical sources.

2.2. Experimental methods

The static and low-frequency elastic properties of ALHS were investigated with a Perkin–
Elmer Dynamic Mechanical Analyzer (DMA 7). Within this apparatus the samples are
exposed to a given static force which is modulated by a dynamic force of chosen amplitude

† Structural data obtained from A Pietraszko, Wroc law, 1994.
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and frequency. The amplitudeu and the phase shiftδ of the resulting elastic response
of a sample are registered via inductive coupling with a resolution of1u ∼= 10 nm and
1δ ∼= 0.1◦. The knowledge ofδ andu allows the determination of the real and the imaginary
parts of the inverse elastic compliance, storage and loss modulus,Ceff = S−1 (see pp 38–40
of [15] and pp 2–4 of [16]):

Ceff ′ = Ceff cosδ and Ceff ′′ = Ceff sinδ. (1)

The force is transmitted by a quartz rod, which is also the probe for the position of the upper
end of the sample. The sample itself is placed within a sample holder made of quartz, too.
The displacement sensitivity is 0.2µm (sample dimensions perpendicular to the direction
of measurement were determined with an accuracy of 10µm).

Applied forces were chosen high enough to guarantee elastic amplitude values distinctly
larger than the above-mentioned resolution of1u (i.e., in the region ofµm). Hence the
error of the measured (relative) values ofCeff is in the region of some per cent.

The minimum temperature available during DMA experiments was∼90 K; the
temperature values are obtained with a resolution of 0.1 K. The available frequencies were
1–50 Hz; because of the low frequencies (quasistatic measurements) the elastic compliance
is proportional to the elastic amplitude (see below).

Typical sample dimensions were in the region of a few mm; samples exposed to three-
point bending had a thickness of some tenths of a mm. The estimated uncertainty of the
stress values is±10%, resulting from irregularities in the shapes of the samples and from
errors of the thickness measurements. Thus the determination of relative changes is more
precise than that of absolute values ofCeff .

In a parallel-plate measurement a sample is exposed to a forceF acting on the whole
cross sectionA (which is perpendicular to the long sideL of the sample). This produces a
homogeneous stress profile within the sample leading to an elastic deformation amplitude
u. Then the elastic compliance is given (see pp 37, 38 of [15] and pp 660–3 of [17]) by

Seff = uA

LF
. (2)

During most of the experiments the parallel-plate technique was used.
For the investigation of the direction dependence of the domain wall contribution to

the measured elastic compliance it was necessary to prepare samples whose sides formed
an angle of 33◦ with the crystallographica-axis. Because it proved to be easier to prepare
such samples for three-point bending, this mode of the DMA apparatus was applied in this
case.

A dynamic forceP is applied on a sample resting on two edges. The resulting bending
moment creates an inhomogeneous stress profile within the sample.Seff , the measured
elastic compliance, is then proportional to the amplitude (see p 34 of [15] and p 666 of
[17]):

Seff ≈ 4H 3Du

PL3
. (3)

H andD are the height and depth of the sample, whileL is the distance of the edges of
the three-point-bending apparatus.

2.3. Experimental results

2.3.1. ‘History’ dependence.The term ‘history’ was chosen to express the fact that the
experimental results obtained were distinctly dependent on the treatment that the sample
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Figure 1. Measured values ofCeff ′
for several consecutive runs.

was exposed to before the actual measurement. Measurements ofC
eff

11 revealed during
temperature cycling the behaviour described below (in order to emphasize the characteristics,
only lines connecting the measured values are shown in figure 1). The absolute value of

C
eff

11

′
was found to be(6 ± 0.6) × 109 Pa at room temperature. This may be compared

with the value ofCeff

11

′
(which is equal to(S ′

11)
−1, becauseS ′′

11 ≈ 0 at room temperature)
calculated from the results given in [5]: 5.9 × 109 Pa. Hence good agreement is found.

(1) The first cooling (see figures 1 and 2).Starting from room temperatureCeff

11

′

decreases, reaching a minimum atTc. Then C
eff

11

′
remains rather small, showing only a

very small increase with decreasing temperature (comparing Brillouin measurements [5]

belowTc one would have expectedCeff

11

′
to rise again significantly). At around 162 KCeff

11

′

rises to reach a value of about 1 GPa which remains almost constant down to∼100 K (the
lower-temperature limit of the DMA).

C
eff

11

′′
, which is very near zero in the paraelastic phase, shows a maximum atTc. Below

Tc it remains larger than zero due to the appearance of ferroelastic domains. Sometimes a

maximum at around 190 K is observed. At the temperature whereC
eff

11

′
shows a step,Ceff

11

′′

exhibits a maximum (this maximum is higher than the maximum observed atTc—compare
ferroelectric KDP [18]). In analogy to the results for ferroelectric materials this temperature
(of about 162 K) will be denoted byTf .

BelowTf , C
eff

11

′′
decreases, but then unexpectedly rises again to reach another maximum.

The height of this ‘low-temperature damping maximum’ is much larger if the crystal has
not been exposed to temperature cycling before or, as it seems here, if it has been annealed
at higher temperatures, i.e.,∼400 K (compare figures 2 and 3).

(2) The first heating (see figure 3).On heating up again, the behaviour described for
cooling is reproduced in the opposite direction. The only difference is that for static stress
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Figure 2. Measured values of the real and imaginary parts ofCeff .

Figure 3. Measured values of the real and imaginary parts ofCeff .

values>some 105 Pa,Ceff

11

′
increases slightly belowTc, thus producing a V-shaped minimum

at aroundTc. C
eff

11

′′
shows the same temperature dependence as for cooling.

(3) The second cooling (see figure 1).On cooling down directly (i.e., within some

minutes) after the first heating has finished, the following is found. AgainC
eff

11

′
reaches a
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Figure 4. Measured values of the real and imaginary parts ofCeff .

minimum atTc, and remains rather small belowTc (although not as small as during the first

run). At Tf , C
eff

11

′
rises to much higher values than during the first run. Sometimes even

the room temperature value ofC
eff

11

′
is reached. The value ofCeff

11

′
below Tf is not always

constant; sometimes it decreases by some GPa. The maximum ofC
eff

11

′′
at aroundTc is

higher with respect to the maximum at aroundTf than during the first run. The maximum

of C
eff

11

′′
below Tf (the ‘low-temperature damping maximum’) more or less vanished in all

of the later runs.
(4) The second heating (see figure 4).On heating again,Ceff

11

′
decreases atTf , reaching

about the same values as during cooling. Sometimes an additional maximum ofC
eff

11

′
occurs

at around 190 K which is accompanied by a maximum inC
eff

11

′′
. The features aroundTc

are similar to those in the first heating.C
eff

11

′′
does not show any new aspects.

(5) Later runs (see figure 1).Later runs started directly after the runs before reveal the
same behaviour as the second run of consecutive temperature cyclings. Only the values of

C
eff

11

′
are not exactly reproduced belowTf .

The recorded differences might be compared with observations of the domain structure
where different patterns were found for first and later runs [9].

After leaving the samples at room temperature for several hours (one night) at zero
external stress, the behaviour of a first run could be reproduced.

This did not work at low temperatures—two different experiments were carried out at
100 K. (i) A sample having crossed the phase transition temperature only once was left at

zero stress for 8 h:Ceff

11

′
did not change. (ii) Then a sample having been cooled for the

second time during temperature cycling was left at zero stress for 8 h. Also hereC
eff

11

′
did

not change.
The temperature dependence ofC

eff

11 above room temperature is shown in figure 5: for
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Figure 5. Measured values ofCeff

11 above room temperature.

rising temperature the storage modulusC
eff

11

′
remains constant. Around 410 K it starts to

decrease until the melting point is reached. It is interesting to note that this isnear the
temperature where dielectric properties change and ALHS exhibits a ‘protonic’ transition

(Ts ≈ 415 K) [8, 9]. The loss modulusCeff

11

′′
remains very small over the whole temperature

range.

2.3.2. Frequency dependence.In the case of ferroelastic domain freezing one would expect
a frequency dependence ofTf (see section 4.1). However, no such dependence could be
found. PlottingTf versus frequency no clear dependence could be found. The only clear
result obtained was thatTf lies at 162 K± some degrees (the uncertainty results from the
statistical scattering of the experimental values around 162 K). In section 4.1 we will try to
estimate at least some limits of the parameters describing the ferroelastic domain freezing
in ALHS.

A clearer picture could be gained from the frequency dependence of the low-temperature
damping maximum. Two different fitting attempts have been made: an Arrhenius law
(equation (4)) as well as a Vogel–Fulcher law (equation (5)) [19] have been taken as fitting
functions:

(τ rel
2 )A = τ 0

2 exp

(
Eact

2

T

)
(4)

(τ rel
2 )V F = τ 0

2 exp

(
Eact

2

T − TV F

)
(5)

whereEact
2 is the activation energy related to the process considered andTV F is the Vogel–

Fulcher temperature.
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Fitting with a Vogel–Fulcher law one obtains

Eact
2

∼= 0.0036± 0.0040 eV(42 K) TV F
∼= 85.5 ± 8.3 K

τ 0
2

∼= 1.7 × 10−3 s (ln(τ 0
2 ) = −6.43± 1.34).

The fit according to an Arrhenius law yields

Eact
2

∼= 0.119± 0.024 eV(1379 K)

τ 0
2

∼= 3.7 × 10−8 s (ln(τ 0
2 ) = −17.11± 2.62).

As the large error values show, the results are not very reliable. In addition,TV F is a bit
too low for investigating the connected low-temperature process more precisely with the
DMA apparatus. Nevertheless, the results seem to indicate that the temperature dependence
of τ rel

2 is described better by a Vogel–Fulcher law than by an Arrhenius law.

Figure 6. Measured values ofCeff ′
for a sample withL oriented alongθ1 = 33◦.

2.3.3. Direction dependence.In connection with the hypothesis of ferroelastic domain
freezing (compare sections 3.2.1 and 4.1), three-point-bending measurements have been
performed on samples whose edges were parallel and perpendicular to the direction of
the domain walls (33◦ with respect to the crystallographica-axis), because no influence
of domain wall motion on the elastic constant is expected in this direction. Therefore
the temperature dependence of the elastic constant should display the behaviour of a
monodomain crystal. These measurements proved to be difficult because many samples
broke atTc or in the region belowTc. This might have been due to the high stiffness of
ALHS if stressed along this direction [9]. The resultingCeff ′

(33◦) is shown in figure 6.
For decreasing temperatureCeff ′

decreases, too, reaching a minimum at aroundTc. Then
Ceff ′

increases again, as expected for a crystal where there is no contribution of moving
domain walls to the elastic constant (see also the discussion in section 4.1).
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3. Fundamental theoretical considerations

Before interpreting the experimental results, a theoretical basis on which to explain the
observed domain wall effects in ALHS has to be developed. Mainly, three questions are
connected to this.

(1) Under which circumstances (applied external fields etc) does domain wall motion
occur in ALHS?

(2) Is it possible to stimulate domain wall motion with a given experimental method or
not? The answer to this can help one to distinguish domain wall effects from others.

(3) How does the motion of domain walls affect the (low-frequency) elastic properties
of a crystal?

The answers to these questions will be given in the following sections where three
different methods of low-frequency elastic measurement will be considered.

3.1. Domain switching in ALHS

A domain wall between two ferroelastic orientation statesS1, S2 starts to move when the
energetical equilibrium betweenS1 andS2 is disturbed (the difference between their Gibbs
free-energy densities18 6= 0). In this case the state with the lower energy density enlarges
at the cost of the other orientation state.

Therefore one has to find the dependence of this energy difference on external influences
for a crystal belonging to the Aizu species 4F2 (No 78) [20].

The difference between the Gibbs free-energy densities of two orientation states of a
pure ferroelastic crystal which is exposed only to the stress componentsσij is given by (see
p 18 of [21])

18 = 8(S2) − 8(S1) = −1es
ij σij − 1

2
1Sijkl σij σkl − · · · (6)

where the last term denotes the ferrobielastic contribution (see p 19 of [21]).
For the Aizu species 4F2,18 [9] is

18 = 2e(σ1 − σ2 + qσ6) − 1

2
[(S22 − S11)(σ

2
1 − σ 2

2 ) + 2(S23 − S13)(σ1σ3 − σ2σ3)

− 2(S16 + S26)(σ1σ6 + σ2σ6)

− 4S36σ3σ6 + (S55 − S44)(σ
2
4 − σ 2

5 ) − 4S45σ4σ5] (7)

wheree = es
11 is a component of the tensor of spontaneous strain, which is related to the

componentf = es
12 by q = 2f/e. If the external uniaxial stressσ is applied in a general

direction, the stress components are given by (see p 68 of [21])

σij = li lj σ li = cosθi . (8)

The θi are the angles between the general direction and the axisxi , and the following
identity is valid:

l2
1 + l2

2 + l2
3 = 1. (9)

Inserting equation (8) in (7) one gets the dependence of the difference of the Gibbs free-
energy densities18 on the applied stressσ and the direction cosines:

18 = 2eσ (l2
1 − l2

2 + ql1l2) − σ 2

2
[(S22 − S11)(l

4
1 − l4

2) − 2(S16 + S26)(l
3
1l2 + l3

2l1)

+ (2S23 − 2S13 + S44 − S55)(l
2
1l

2
3 − l2

2l
2
3) − 4(S36 + S45)l

2
3l1l2]. (10)
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3.2. Stimulation of domain wall motion by various experimental methods

3.2.1. Stimulation by three-point bending.A detailed analysis [9] showed that for three-
point bending

18 = σl

{
2e(Q + qR) + σl

2
[(S11 − S22)Q + 2(S16 + S26)R]

}
= σl{U(cos2 θ1 − sin2 θ1) + 2V cosθ1 sinθ1} (11)

where Q = cos2 θ1 − sin2 θ1, R = cosθ1 sinθ1, U = 2e + (σl/2)(S11 − S22), and
2V = 2eq + σl(S16 + S26). Hence, generally speaking, the domain walls will be moving
within a c-plate of ALHS which is subject to three-point bending.

Setting equation (11) equal to zero one finds that in full agreement with physical
considerations which lead one to expect four equivalent directions in a crystal with two
orientations of domain walls perpendicular to each other, there are four directionsθ1 where
no domain wall motion can be excited (ϕ is the angle between the domain wall and the
tetragonala-axis):

θ1 =
{
ϕ, ϕ + π

2
, ϕ + π, ϕ + 3π

2

}
. (12)

The motion of the domain wall within the sample due to external stress leads to an
additional contribution, which is why the entire straineeff is thus composed of the pure
elastic contributioneelast and a contributioneDW due to domain wall motion [9]:

eeff = eelast + eDW . (13)

The resulting elastic complianceSeff is then given by

Seff ≈ 4H 3D

PL3
(uelast + uDW). (14)

3.2.2. Stimulation by the parallel-plate technique.Geometrically, the parallel-plate method
may be treated as a simpler special case of the three-point-bending method. All of the
parallel-plate results presented in this work have been obtained for configurations where
the uniaxial stress was applied along one of the crystallographic axes. Therefore the
considerations may be restricted to three cases:σ ‖ a, σ ‖ b, and σ ‖ c. Because
for each of these configurations only one stress componentσi 6= 0, Hooke’s law reduces to

ei = Siiσi . (15)

According to equation (7),18 = 0 if only σ3 is applied.In such a case one would not
expect a change of the elastic compliance due to moving domain walls.The experimental
results are in accordance with this.

For the other two directions ofσ , 18 is given by (following from equation (7))

18 = 2e(σ1 − σ2) + S11 − S22

2
(σ 2

1 − σ 2
2 ). (16)

Like for three-point-bending measurements the elastic compliance is a sum of two
contributions [9]:

Seff = Selast + SDW . (17)

BecauseeDW has the same sign as the applied stress,SDW > 0, thus leading to a softer
crystal behaviour than expected from pure elastic calculations.
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3.2.3. Stimulation with a torsion pendulum.Although no results obtained with the torsion
pendulum technique are presented in this work, it will prove to be of significance for
dealing with this kind of experiment. As there are almost no low-frequency elastic results
available for ALHS, everything which has been published until now has to be referred to
measurements presented by Mróz et al performed with a torsion pendulum [4]. Their results
will be used for estimations concerning the relaxation processes of domain walls in ALHS.
Studying the applied method [22], one finds that the resonance frequencies were in the
region of 200 Hz, which is higher by a factor of four than the highest frequencies within
reach of the DMA apparatus.

A detailed analysis of three different geometrical situations [9] shows that if the torsion
axis is parallel to thez-axis there should be domain wall motion induced only by higher
(ferrobielastic) coupling.

The situation is different if the torsion axis coincides with thex- or the y-axis of the
coordinate system. Then domain wall motion is expected due to ferroelastic coupling. Only
the application of a stress componentσ6 may cause a ferroelastic shifting of the domain
walls (which is equivalent to the fact that the torsion axis is parallel to thex- or they-axis).

As a consequence the influence of domain wall motion should hence be observed also
with a torsional pendulum—provided that the resonance frequencies of the sample are within
the frequency range where domain wall shifting can be induced.

Figure 7. Geometrical relationships for domain wall shifting.

3.3. Estimation of domain wall motion parameters

As has been discussed already, the observed elastic behaviour betweenTc and Tf can be
accounted for by moving domain walls producing an additional contribution to the elastic
compliance of ALHS. Until now no quantitative description of this domain wall motion has
been given. In this section it is our aim to estimate some basic quantities related to the
domain structure. As has been stated before, the reason for the motion of the domain walls
lies in a difference18 between the potentials of the two orientation statesS1 andS2. This
difference is induced by external stress. In the case of a friction-free domain wall motion
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one would expect a vanishing coercive stress for ferroelastic domain switching; i.e., even
for a very small stress (or18) all of the domain walls would cross the crystal boundaries
thus leaving a monodomain sample. Because this has not been observed it is legitimate
to assume a relationship between18 and the resulting domain wall shift1w. Hence the
following Taylor series expansion will be used:

1w(18) = 1w(0) + ∂w

∂18

∣∣∣∣
0

18 + ∂2w

∂182

∣∣∣∣
0

182. (18)

Taking into account the first two terms, the expansion reduces to a linear function of
18 because1w(0) = 0. Again, the applied stress is restricted to thex–y-plane and
ferrobielastic contributions are neglected. Thus equation (18) transforms after insertion of
equation (10) to

1w = Cφw 18 = 2Cφweσ(cos2(θ1) − sin2(θ1) + q cos(θ1) sin(θ1)) (19)

whereCφw is a measure for the domain wall mobility. Equation (19) can be transformed
[9] to

1w(θ1, ϕ) = 2Cφweσ sin 2(ϕ − θ1)

sin 2ϕ
(20)

where θ1 again denotes the angle between the direction of the applied stress and the
crystallographica-direction, andϕ denotes the angle between thea-axis and the domain
wall (see figure 7). Besides this, it stands to reason that the solutions found in equation (12)
for the condition of zero domain wall motion fulfil also equation (20).

Figure 8. Calculated temperature dependences of the coefficientCφw for several values of the
domain wall densityρDW (m−1).
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The calculation ofCφw can be found in the appendix and yields

Cφw(T ) = 2F1 + X(T )

Y (T )ρDW(T )at (T )
.

According to thisCφw was calculated for the temperature interval between 170 K and 230 K,
i.e., for the interval whereSeff is only weakly temperature dependent. The reason for that
is that below this temperature region,Seff starts to decrease at aroundTf , and the domain
walls cannot move freely any more. Not far above 230 K the domain pattern vanishes
because of the phase transition to the tetragonal high-temperature phase. The experimental
values obtained for the region of 170 K–230 K are approximated by a linear temperature
behaviour, whereCeff (170 K) is set equal to 6× 108 Pa andCeff (230 K) is set equal
to 4 × 108 Pa. It is obvious that 0< F1 < 1. As calculated,X(T ) varies between≈80
and 50 for the temperature interval 170 K–230 K. Therefore the contribution ofF1 may be
neglected. With the help of equation (A11) this allows the calculation of the temperature
dependence ofCφw for given temperature-independent values ofρDW . This has been done
for values ofρDW between 103 m−1 and 106 m−1 (for F1 the value 0.5 was inserted)—the
results are shown in figure 8. As can be seen,Cφw decreases with lowering temperature
and thusthe domain wall mobility decreases. Resulting consequences will be reported and
dealt with in future work.

The typical (temperature-dependent) values of domain wall densities are within the
above-mentioned region for ALZX crystals (Z= H, D; X = S, Se); therefore at least the
order of magnitude ofCφw(T ) may be estimated. In ALHS, ALHSe and in ALDSe,ρDW

increases with decreasing temperature. The value ofρDW in ALHSe lies between 103 and
104 approximately 15 K belowTc and in the region of 105 about 45 K belowTc [2]. For
ALDSe ρDW ∼= 3 × 105 at 60 K belowTc [23]. Using these values for the estimation for
ALHS, one finds from figure 8 thatCφw(T ) decreases by about three orders of magnitude
between 230 K and 170 K. Hence forθ1 = 0 the resulting domain wall shift is approximately
given by (see equation (20))

1w(≈ 170 K) ≈ σ × 10−13 m

1w(≈ 230 K) ≈ σ × 10−10 m.

This yields avariation of 1w between≈100 Å and≈10 µm (thus the domain walls
are expected to be easily movable in the region nearTc). It is interesting to compare these
values with that of the amplitude of lateral displacement of domains in, e.g., ferroelectric
KH2PO4 (KDP) which was found to be of the order of 10̊A. In addition, the domain wall
thickness was estimated to be about 500Å (a hundred times the lattice spacing) in KDP
[24]. In Rochelle salt the thickness of the ferroelectric domain walls was determined to be
between 500̊A and 2500Å [25]. Also values of 30–70̊A and 12–220Å have been reported
for KDP and Rochelle salt, respectively [26].

4. Further considerations

In the following, some of the main features found in the temperature dependence ofCeff

and described in section 2.3 will be discussed and as far as possible explained.

4.1. Ferroelastic domain freezing

The most striking result is that ofCeff

11

′
remaining almost constant over a broad temperature

region belowTc, while one would expect a steep rise starting right atTc. AroundTf , C
eff

11

′
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exhibits a rise which is accompanied by a maximum ofC
eff

11

′′
.

Up to this point of the work, domain wall motion has been discussed only for the
case of a static external stressσ being applied to the sample. Now a thermally activated
domain wall relaxation process with a relaxation timeτ rel

1 will be considered (compare also
the discussion of the domain wall mobility in section 3.3). Hence for a Debye relaxation
(compare, e.g., p 94 in [27]) one would expect the following for the frequency-dependent
elastic constantC(ωappl, τ

rel
1 ) if a driving force (i.e., external stress) is applied with a given

frequencyωappl :

C ′(ωappl, τ
rel
1 ) = C(ω = ∞) − C(ω = ∞) − C(ω = 0)

1 + ω2
appl (τ rel

1 )2
(21a)

C ′′(ωappl, τ
rel
1 ) = C(ω = ∞) − C(ω = 0)

1 + ω2
appl(τ

rel
1 )2

ωapplτ
rel
1 . (21b)

Assuming nowτ rel
1 to rise with decreasing temperature, while keepingωappl constant,

the following is expected.
Equations (21a) and (21b) imply a rise ofC ′(ωappl = constant, τ rel

1 ) and a maximum
of C ′′(ωappl = constant, τ rel

1 ) at aroundTf —whereTf is equivalent to the temperature for
which ωapplτ

rel
1 ≈ 1. AboveTf , ωapplτ

rel
1 < 1, i.e. the applied frequency is low enough for

the domain walls to follow the external stimulation.BelowTf , ωapplτ
rel
1 becomes>1; the

relaxation timeτ rel
1 is now too large for the external dynamic stress to stimulate the domain

wall motion with whichτ rel
1 is associated (‘domain freezing’).

In general,Tf is expected to increase with risingωappl . However, no clear frequency
dependence ofTf could be found in DMA experiments. Hence it is concluded thatTf is
quite near a static limit for frequencies650 Hz. As a consequence—and in accordance
with the ferroelectric case of KDP [18]—a Vogel–Fulcher law is assumed to be valid:

τ rel
1 = τ 0

1 exp

(
Eact

1

T − TV F

)
. (22)

Because the narrow frequency interval accessible with the DMA apparatus did not allow
us to observe a clear frequency dependence ofTf , only the simplest case will be considered
here. Thus the activation energy was assumed to be a single temperature-independent value
Eact

1 (compare again [18] where a temperature-independent distribution ofEact
1 is assumed).

An additional reason for the difficulties in determining the frequency dependence ofTf might
be that already given by Kuramoto who observed a dependence ofTV F on the specimens
and on the run of the measurement.

In addition, results for higher frequencies have to be taken into account. Until now,
only results obtained by Brillouin scattering and by the torsion pendulum technique have
been published for ALHS. The resonance frequencies of the torsion pendulum measurements
lie in the region of 200 Hz. According to section 3.2.3moving domain walls produce a
lowering of the measured torsion modulus. As can be seen from [4]no such lowering has
been observed.

Thus it is clear thatTf > Tc for ωappl ≈ 200 Hz. Although the lack of a clear
determination ofTf for this frequency proves a disadvantage, at least an estimation of the
parameters of the Vogel–Fulcher dependence may be achieved. Each value obtained for
Tf by DMA experiments is known only within an error interval of±0.5 K. Thus it is
conceivable that there is a slight frequency dependence ofTf which is ‘hidden’ within the
resulting uncertainty of±5 K. In fact it is a consequence of the assumed Vogel–Fulcher
dependence thatTf (1 Hz) lies at least slightly belowTf (50 Hz). For the following estimation
it was presumed that the difference betweenTf (1 Hz) andTf (50 Hz) is equal to the error
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interval. Together with the resultTf (200 Hz) > Tc, this makes it possible to determine
an upper limit forEact

1 : in the event of the above assumption being incorrect it is clear
that Tf (1 Hz) andTf (50 Hz) can lie only nearer together than estimated.Tf (200 Hz) may
be higher thanTc. Both cases would lead to a stronger curvature of the resulting Vogel–
Fulcher curve, thus producing lower values ofEact

1 . Calculating a Vogel–Fulcher curve
going through the points (157 K, 1 Hz), (167 K, 50 Hz), and (Tc, 200 Hz) one obtains

Eact
1

∼= 0.002 eV(24 K) TV F
∼= 152.5 K τ 0

1
∼= 6 × 10−4 s.

Calculating the parameters for (162 K, 1 Hz), (162.2 K, 50 Hz), and (250, 200 Hz) one
obtains

Eact
1

∼= 3.3 × 10−5 eV (0.38 K) TV F
∼= 161.9 K τ 0

1
∼= 7.9 × 10−4 s.

In addition, a very rough estimation of the temperature dependence ofτ rel
1 can be given.

As τ rel
1 ≈ 1/ωappl at Tf one gets

3 × 10−3 s 6 τ rel
1 6 0.15 s for∼=162 K

7.5 × 10−4 6 τ rel
1 s for Tc.

As discussed in section 3.2.1,no domain wall motion is expected if the external stress
is applied parallel and perpendicular to the domain wall orientations. The corresponding
experimental result is shown in figure 6:below Tc, Ceff ′

rises again indicating that there
is (almost) no domain wall contribution to the elastic compliance (compare equation (17)).
The inhomogeneous stress profile induced by three-point bending (compare section 2.2)
leads to a ‘smearing out’ of the phase transition which can be seen in figure 6.

4.2. Additional features and open questions

Beyond the ‘domain freezing’ described in the preceding section, two additional phenomena
have been observed which seem to be closely connected to the domain (wall) properties of
ALHS: a ‘history’ dependence and residual domain wall motion belowTf .

If a sample is exposed to temperature cyclingC
eff

11

′
rises during the later runs to

much higher values belowTf than during the first run(i.e., the first cooling and heating;
figure 1). Also, the low-temperature damping maximum decreases and vanishes for later
runs (figure 4). There may be a certain connection between the two features. It is also
interesting that the low-temperature damping reaches much higher values for samples used

in experiment for the very first time (figure 2). The highest values ofC
eff

11

′
below Tf are

of about the same magnitude as those at room temperature, i.e., the crystal is nearer to a
monodomain state. This and the magnitude of the activation energy of the process which
leads to the low-temperature damping maximum (section 2.3.2) suggest thatsome kind of
domain wall relaxation is also involved belowTf . However, the process must be different
from that observed aboveTf , as the low-temperature damping and some remaining damping
aroundTf are observed even for stress values in the region of MPa [9]. One possibility
might be thateven belowTf at least a part of the domain walls performs small oscillations
around pinned positions (instead of shifts), in contrast to the case for the temperature region
aboveTf where shifting of the domain walls is also possible. Hence the ‘domain freezing’

is not a total one.The above would also explain why the ratio of the values ofC
eff

11

′
below

and aboveTf shows a dependence on static stress [9]: if static stress is applied, domain
walls are shifted aboveTf , while this does not occur belowTf .

The following consideration might account for the ‘history’ dependence: within a sample

having crossed the phase transition temperature only once before (a ‘virgin sample’),C
eff

11

′
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clearly does not reach (above and belowTf ) the value expected for a crystal whose domain
walls are more or less immovable. So at least a part of the domain walls oscillates also
belowTf , thus producing the low-temperature damping maximum (see above). After heating
aboveTc and cooling back again continuously, we assume that internal stress (‘transition
debris’ etc) begins to hinder the domain wall motion. Therefore even aboveTf , the values

of C
eff

11

′
are higher than for a fresh crystal. In particular the type of domain wall relaxation

still existing belowTf is suppressed by internal stress and soC
eff

11

′
increases belowTf more

than within a virgin sample.
The hypothesis of internal stress influencing the elastic behaviour of ALHS crystals is

corroborated by the fact that a sample cooled down belowTc several times and afterwards
heated up to a temperature of∼400 K or more shows again the behaviour of a virgin crystal
(compare [10] where something similar is reported for ALHS, too).Annealing takes place
also at room temperature if the crystal is kept at zero external stress for several hours.Thus
one may say that virgin samples are in a kind of ‘ground state’, which is left after the first
cooling and heating cycle. The crystal returns to this ground state by itself if the value of
the ‘product of provided temperature and time’ is large enough. Hence for low temperatures
one would expect very long annealing times (under the assumption that annealing actually
can take place at low temperatures). Indeed, keeping a virgin sample as well as a crystal
exposed to the second run of temperature cycling at a temperature of≈100 K at zero
external stress for 8 h did not change the actual elastic behaviour of the sample, which is
in accordance with the expectations.

In addition, there might be also a connection between the annealing behaviour of the
crystal and the hindrance of macroscopic domain wall motions: on the one hand one expects
much higher annealing times for lower temperatures, and on the other hand domain walls
are more hindered in their motion at lower temperatures. This leads to the conclusion
that internal stress concentrations are reduced via temperature-activated motions to which
domain wall motion is related (compare also figure 8).

5. Conclusions

It has been shown in this work that the low-frequency elastic anomalies observed in the
ferroelastic phase of ALHS result from the motion of domain walls (compare also optical
domain studies which give a clear hint of the dynamic character of the phenomena [9]).
The elastic behaviour in the temperature region betweenTc and Tf can be explained by
(vibrational and lateral) domain wall motions reaching amplitudes of someµm directly
below Tc. These amplitudes decrease with decreasing temperature due to an increase of
the related relaxation timeτ rel

1 . Simultaneously, the macroscopic mobility of the domain
walls decreases and the coercive stress rises due to the increased energy difference between
the two possible ferroelastic orientation states. AroundTf

∼= 162 K a distinct lowering
of domain wall mobility occurs(partial ‘domain freezing’)leading to an increase of the
storage modulus and to a maximum of the loss modulus. To the knowledge of the authors,
this is the first time that pure ferroelastic domain freezing has been reported. In ALHS,
‘domain freezing’ seems to be a ‘freezing’ of motional degrees of freedom of the domain
walls. This freezing is ‘anticipated’ by the decreasing domain wall mobility with lowering
temperature.

For the frequency range accessible with the DMA apparatus,Tf has almost reached
its static limit and therefore no frequency dependence ofTf could be observed. A rough
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estimation, assuming a Vogel–Fulcher dependence ofτ rel
1 , yields

Eact
1 6 0.002 eV 152 K6 TV F 6 162 K 6× 10−4 s 6 τ 0

1 6 8 × 10−4 s.

BelowTf the domain walls seem to retain a certain (vibrational) mobility, which is expressed
in the fact that the storage modulus remains rather small while the loss modulus exhibits
an additional maximum at low temperatures. The parameters of this relaxation process
obtained by a fit with a Vogel–Fulcher law are

Eact
2

∼= 0.0036± 0.0040 eV TV F
∼= 85.5 ± 8.3 K τ 0

2
∼= 1.7 × 10−3 s.

During later runs of temperature cycling an increase of the measured storage modulus
Ceff ′

has been found. It seems that if a crystal is exposed to more than one consecutive
run of cooling and heating then, as well as the domain wall motion betweenTc andTf , the
low-temperature relaxation (T < Tf ) is in particular affected by remaining internal stresses.
As we have observed in our experiments,these internal stresses can be removed either by
heating the sample above room temperature or by allowing enough time at room temperature
without loading.

Due to the fact that the frequency range of the DMA was too small for us to obtain clear
data on the frequency dependence ofTf , we suggest carrying out additional investigations
in the frequency interval between 50–200 Hz. Future adaptations of the DMA apparatus
will most probably allow measurements of the low-temperature relaxation below 100 K
also. The behaviour of ALHS crystals exposed to high uniaxial stress during cooling will
be interesting to study in future, too.
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Appendix. Calculation of the parameter Cφw

As the domain walls in ALHS are perpendicular with respect to each other, there are four
possible values of the domain wall angleϕ. Because of the form of1w(θ1, ϕ) it is sufficient
to check the angular dependence of1w for a second domain wall (DW2) perpendicular to
the first one (DW1). Insertion ofϕ − 90◦ instead ofϕ yields again equation (20). Thus it
is obvious that the system of domain wall orientations is sufficiently described if justϕ is
taken into account.

During parallel-plate measurements the external stress is applied in the same direction
as where the displacement is measured. It is therefore of great interest to calculate the
change of this displacement due to domain wall shifts within the sample. The simplest way
of expanding an orientation state (domain) is given by domain walls whose directions of
shift are perpendicular to the domain walls themselves. Therefore an additional geometrical
consideration has to be carried out in order to find1w in relation to the change of the crystal
length along the direction of applied stress: generally for a given direction of applied stress
θ1, the projections of1w will be different for DW1 (1w1) and for DW2 (1w2). They are
given by

1w1 = 1w

sin(ϕ − θ1)
and 1w2 = 1w

cos(ϕ − θ1)
. (A1)
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The contribution in the direction ofθ1 produced by the shift of two single-domain walls
perpendicular to each other is given by

1wpair = 1w1 + 1w2. (A2)

It is sufficient to take into account only those values ofθ1 for which 1w 6= 0. Besides this,
it is necessary to distinguish betweenθ1 > ϕ andθ1 < ϕ. As θ1 + 180◦ is equivalent toθ
the remaining cases are as follows.

(1) ϕ > θ1 > ϕ − 90◦:

1wpair (ϕ > θ1 > ϕ − 90◦) = 4Cφweσ(sin(ϕ − θ1) + cos(ϕ − θ1))

sin 2ϕ
. (A3)

(2) ϕ + 90◦ > θ1 > ϕ:

1wpair (ϕ + 90◦ > θ1 > ϕ) = 4Cφweσ(sin(ϕ − θ1) − cos(ϕ − θ1))

sin 2ϕ
. (A4)

The majority of the measurements have been performed for stress applied along the
crystallographica-direction. Therefore the following calculations will be reduced to the
case whereθ1 = 0. Neglecting the shear component of the order parameter, the change of
length along thea-direction induced by two shifting domain walls is given by 2e 1wpair .
Hence the total change of length is

1w6 = e 1wpair nDW (A5)

wherenDW denotes the number of domain walls intersecting a line parallel to the (tetragonal)
a-axis (compare figure 7). Here it is assumed thatnDW is constant (with some tolerance)
for all possible lines parallel to thea-axis. In addition, it is presumed thatnDW is an even
number. Both assumptions are not very restrictive for domain wall densities, as observed
(see section 3.3).

In the following a simple model is constructed in order to calculate the relationship
between domain structure and the physical extent of a crystal:nuc is the total number of
unit cells along thea-direction, of whichs1 are in the orientation stateS1 andnuc − s1 are
in the orientation stateS2 for zero external stress (here the regions within domain walls are
neglected). The average length of the crystal isnucat (T ), whereat (T ) is the extrapolated
tetragonal lattice parameterat (T ) = a(RT )(1 − αex(RT − T )). The ferroelastic distortion
in S1 produces an additional contributione(T )s1a

t (T ); S2 produces−e(T )(nuc − s1)a
t (T ).

Thus the resulting crystal lengthl0 parallel to thea-direction is, at the temperatureT ,

l0(T ) = at (T )(2e(T )s1 + nuc(1 − e(T ))). (A6)

The strain induced by domain wall shifts is then calculated from

eDW
1 = 1w6

l0
. (A7)

Combining equations (A5), (A6), (15), (13), and (17) one obtains

at (T )σ1(S
eff

11 (T ) − Selast
11 (T )) = 1wpair (T )nDW

2s1 + nuc(1/e(T ) − 1)
(A8)

which is transformed with the aid of equation (A3) to
4e(T )(sinϕ + cosϕ)

(S
eff

11 (T ) − Selast
11 (T ))a(RT )(1 − αex(RT − T )) sin 2ϕ

= 2F1

CφwρDW
uc

+ 1

CφwρDW
uc

(
1

e(T )
− 1

)
= Y (T ) = 2F1

CφwρDW
uc

+ 1

CφwρDW
uc

X(T )

(A9)
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whereF1 = s1/n
uc is the portion of unit cells in the orientation stateS1 andρDW

uc = nDW/nuc

the number of domain walls per side length of a unit cell.X(T ) and Y (T ) consist only
of quantities known from calculations [9] or experiments (see sections 1, 2.3.1) and can
therefore be determined.

Also F1, Cφw, andρDW
uc can be temperature dependent. A temperature dependence of

the domain pattern is indeed reported in [10] for ALHS, in [28] for ALDS, in [2] for ALHSe,
and in [23] for ALDSe crystals. Mostly domain wall densities are estimated by observation
through a polarizing microscope and are given in m−1. ThusρDW

uc is transformed into the
number of domain walls per metre by

ρDW(T ) ∼= ρDW
uc (T )

at (T )
. (A10)

Now it is of great interest to estimate the magnitude of the coefficientCφw which relates
18 to the resulting domain wall shift1w.

Transforming equation (A9) and inserting (A10) yields

Cφw(T ) = 2F1 + X(T )

Y (T )ρDW(T )at (T )
. (A11)
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[6] Mielcarek S, Tylczýnski Z and Mŕoz B 1995EMF-8 (Nijmegen, 1995)abstracts, p P06:55
[7] Paw lowski A 19944th Int. Symp. on Systems with Fast Ionic Transport (Warszawa-Miedzeszyn, Poland,1994)
[8] Zimmermann M and Schranz W 1994Acta Phys. Slovaca44 429–33
[9] Zimmermann M 1995PhD ThesisUniversity of Vienna (in English)

[10] Mielcarek S, Tylczýnski Z, Piskunowicz P and Mróz B 1995Ferroelectrics172 287–94
[11] Zimmermann M, Schranz W, Warhanek H, Apih T, Lahajnar G, Blinc R and Paw lowski A 1995Solid State

Commun.95 749–52
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